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Abstract 

In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointes-
tinal tract on human health and disease. According to the involvement of microbiota in modulating physiological pro-
cesses (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any 
alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. 
In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated 
risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and 
progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bac-
terial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or con-
trolling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential 
and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the 
context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the 
evidence revealing the microbiota’s involvement in cancer and its mechanism. We also delineated how microbiota 
could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
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Introduction
The human gut microbiome is the genomic content of the 
gut microbiota, which comprises all microorganisms that 
are colonized in the human gastrointestinal tract (GIT), 
such as viruses, fungi, protozoa, and predominantly bac-
teria [1]. The diversity and composition of normal gut 
microbiota were altered throughout the individual life 
span and shaped by factors such as dietary nutrients, 

mode of delivery, age, geographical area, use of antibiot-
ics, and host genetics [2–5]. They serve specific functions 
in producing short-chain fatty acids (SCFAs), immune 
system homeostasis, nutrient and drug metabolism, vita-
min synthesis, and protection against pathogen coloniza-
tion [6–8].

Progress in sequencing technologies and bioinformat-
ics tools have facilitated large-scale microbiome stud-
ies, such as the Human Microbiome Project (HMP) and 
the MetaHIT (Metagenomics of the Human Intestinal 
Tract) funded by the U.S. National Institutes of Health 
(NIH) and the European Commission, respectively to 
understand the impact of the microbiome on human 
health and disease [9–12]. Gut dysbiosis is defined as the 
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functional and compositional alterations of gut microbi-
ota in response to environmental or host-related changes 
associated with the manifestation, detection, or therapy 
of the disease [13]. It is increasingly appreciated that gut 
dysbiosis relates to various conditions such as inflamma-
tory bowel disease (IBD), neurodegenerative disease [e.g., 
Parkinson’s and Alzheimer’s disease(A.D.)], diabetes mel-
litus (D.M.), and cancer [14–18]. Moreover, altered gut 
inhabitant microbes influenced the development of auto-
immune diseases, i.e., rheumatoid arthritis, spondyloar-
thritis, and systemic lupus erythematosus (SLE) [19–21].

Cancer is defined as a group of diseases characterized 
by uncontrolled cell proliferation and caused by genetic 
and environmental factors [22, 23]. A growing body of 
research has revealed the link between microbiota and 
cancer, particularly stomach cancer. For instance, the 
variation in the gastric microbial composition in the vari-
ous stages of carcinogenesis including superficial gastri-
tis, atrophic gastritis, gastric intraepithelial neoplasia and 
gastric cancer, was reported by Zhang et al. [24]. Altera-
tion in gut flora increases the risk of gastrointestinal 
malignancy and potentiates carcinogenesis by inducing 
chronic inflammation, producing mutagenic metabo-
lites, modifying stem cell dynamics, and stimulating cell 
proliferation [25]. In addition, the imbalanced microbial 
community could be affected the genetic and epigenetic 
mechanisms of colorectal cancer development [26]. Epi-
genetic alteration regulates gene expression through the 
changes in miRNA regulation, DNA methylation, and 
histone modification. Hence, gut microbiome involve-
ment in carcinogenesis could be mediated by deregulat-
ing the epigenetic modifications [27, 28]. For instance, 
induction of malignant phenotype in murine gastric 
tissue by Helicobacter pylori is associated with hypo-
methylation and downregulation of miR-490-3p [29]. 
Accordingly, cancer-related microbes were associated 
with specific miRNA expression and other epigenetic 
modifications that regulate genes involved in cancer-
related pathways.

The diversity and composition of gastrointestinal 
microbes are impacted not only by cancer development 
but also influence the anti-tumor immunity and response 
to therapy [30]. Hence, multiple strategies have been 
recommended to manipulate microbiota in cancer treat-
ment, e.g., probiotics and fecal microbiota transplanta-
tion (FMT) [30, 31].

In addition to bacterial components, the microbiome 
comprises fungal communities known as the mycobi-
ome, which influence cancer development [32]. As doc-
umented by Luan et  al. the fungal diversity in adenoma 
was lower compared with adjacent biopsy samples. 
Moreover, operational taxonomic units (OTUs) revealed 
substantial differences between adenomas and adjacent 

tissues, as well as between advanced and non-advanced 
samples. For instance, Fusarium and Trichoderma were 
enriched in the adjacent biopsy samples of advanced and 
non-advanced adenoma, respectively [33]. According to 
Coker et al. a higher ratio of Basidiomycota/Ascomycota 
and alteration in enteric fungal diversity in patients with 
colorectal cancer (CRC) is associated with the colorectal 
carcinogenesis [34]. Furthermore, the fungal diversity 
was higher in late-stage CRC than in early-stage CRC 
[35]. It’s worth noting that we’re focusing on the bacte-
rium’s role in cancer development.

Elucidating the interaction between microbiota and 
various stages of cancer development (i.e., initiation, pro-
motion, and progression) might shed light on the gut flo-
ra’s specific function in cancer prevention or treatment. 
This review intends to delineate the role of the microbi-
ome in cancer development and therapy and recapitu-
late the strategies that manipulated the microbiota to 
improve cancer treatment (see Table 1).

Association between microbiome and cancer 
development
Accumulating evidence sheds light on the association 
of microbiota with cancer initiation and progression, 
including the studies conducted on germ-free and gno-
tobiotic animals (i.e., animals born and raised under 
aseptic conditions and colonized with specific microor-
ganisms) and their comparison with their conventional 
counterparts, which presented convincing evidence for 
microbiota’s involvement in tumor induction and the 
establishment of local and systemic immune responses 
[36, 37]. In some of these investigations, researchers 
found a higher frequency of liver cancer, a lower inci-
dence of small intestinal polyposis, and little or no differ-
ence in the occurrence of mammary tumors in germ-free 
mice [38–40]. Moreover, the incidence of tumors induced 
by carcinogens in germ-free (GF) and conventional (CV) 
animals exhibited contradictory results, which could be 
related to differences in animal strains, tumor induction 
protocol (including type, dose, and route of administra-
tion of carcinogen), and organs involved in carcinogen-
esis [37, 41–45].

The oral cavity is inhabited by various types of the 
microbial community that could be translocated to 
the other sites of the body, as well as tumor tissue, and 
involved in cancer initiation and progression by multiple 
pathways (such as producing inflammatory mediators, 
inhibiting immune response, and inducing malignant 
transformation) [46]. It has been confirmed that some 
oral bacterial species could have reached the intestinal 
flora and contributed to gut dysbiosis [47]. This imbal-
anced gut microbiota may have been attributed to gastro-
intestinal diseases and cancer. The association between 
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oral microbiota and tumor development is documented 
by several reports [48, 49]. For instance, the genomic 
analysis of colorectal adenocarcinoma tissue revealed the 
F. nucleatum and other Fusobacterium species enrich-
ment [50]. In addition, these data were consistent with a 
meta-analysis conducted by Drewes et al. that elucidated 
increased levels of oral microbiota such as Peptostrepto-
coccus stomatis, Parvimonas micra, and Fusobacterium 
nucleatum on CRC tissue [51]. Accordingly, it has been 
suggested that the analysis of oral microbiota could be 
considered as a noninvasive cancer biomarker [52, 53].

Sears et al. proposed a paradigm for describing the role 
of microbiota in the causation of colorectal cancer, in 
which three models were considered: individual microbes 
(model 1), a microbiota population (model 2), and indi-
vidual microbes that interact with the microbial commu-
nity (model 3) [54]. The causal role of individual microbes 
in carcinogenesis could be determined by reproducibly 
generating specific cancers in mice [55]. For instance, 
the carcinogenic potential of enterotoxigenic Bacteroides 
fragilis (ETBF) was evaluated in multiple intestinal neo-
plasia (Min) mouse strain. Additionally, the rate of car-
cinogenesis after antibiotic therapy could be determined 
in order to assess the collaboration and synergistic effect 
of other microbiota members [56]. Considering the first 
model, individual microbes (such as Streptococcus gallo-
lyticus, Enterococcus faecalis, Enterotoxigenic Bacteroides 
fragilis, Escherichia coli, and Fusobacterium nucleatum) 
may contribute to colorectal cancer pathogenesis by 

triggering inflammation and DNA damage or impairing 
the DNA repair [54]. Contrarily, as an example of illus-
trating the contribution of the microbial community, the 
study conducted by Wong et  al. provided evidence to 
confirm the tumorigenesis effect of altered gut micro-
biota in CRC patients. Increased infiltration of T-helper 
(Th) 1 and Th17 cells, upregulation of genes involved 
in the pro-inflammatory response (including interleu-
kin (IL) 17A, IL-22, IL-23A, CXC chemokine receptor 
(CXCR) 1, and CXCR2), and the oncogenic pathway were 
observed in intestinal tissue of germ-free and conven-
tional mice gavaged by feces from CRC patients [57]. The 
bacteria associated with specific human cancers are listed 
below (Table 2).

It should be noted that some bacteria cause cancer, 
while others hasten tumor growth by suppressing the 
immune system and promoting cancer cell proliferation. 
As an example for the latter groups, F. nucleatum colo-
nized malignant tissue selectively through the interaction 
between fibroblast activation protein 2 (Fap2) lectin and 
upregulated galactose/N-acetyl-galactosamine (Gal–Gal-
NAc) on tumor cells, which accelerated tumor growth 
and metastasis [58, 59]. Rubinstein and colleagues pro-
posed a two-hit model for colorectal cancer develop-
ment. The first hit is provided by accumulated mutation, 
and the second hit is delivered by microbes (i.e., F. nucle-
atum) that accelerate tumor growth [60]. By this fact, the 
early identification of carcinogenic bacteria colonization 
would be beneficial for cancer treatment and prevention.

Table 1  Association between bacterial colonization and cancer development

Some bacterial species diminished or raised the risk of various types of cancer as shown by the direction of the arrows, i.e., ↓ or ↑
On the other hand, the comparison of the microbial composition between patients and healthy individuals revealed the higher/lower abundance of the bacterial 
population as indicated by ↑↑↑and ↓↓↓, respectively

Bacteria Types of tumor References

Salmonella typhi ↑ Gallbladder cancer Di Domenico et al. [212]

Helicobacter pylori ↑ Gastric cancer Wang et al. [213]

Uropathogenic Escherichia coli ↑ Prostate cancer Elkahwaji et al. [214]

Escherichia coli (strain CP1) ↑ Prostate cancer Simons et al. [215]

Escherichia coli ↑ Bladder cancer El-Mosalamy et al. [216]

Bacteroides vulgatus, Bacteroides stercoris ↑ Colorectal cancer Hu et al. [79]

Lactobacillus acidophilus, Lactobacillus S06, and Eubacterium aerofaciens ↓ Colorectal cancer Hu et al. [79]

Fusobacteria, Leptotrichia genus ↓ Pancreatic cancer Fan et al. [217]

Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans ↑ Pancreatic cancer Fan et al. [217]

↑↑↑ Enterotoxigenic Bacteroides fragilis Colorectal cancer Haghi et al. [218]
Zamani et al. [219]

↑↑↑ Fusobacterium nucleatum Colorectal cancer Chen et al. [220]

↑↑↑ Porphyromonas gingivalis, Fusobacterium nucleatum Oral squamous cell carcinoma Chang et al. [221]

↑↑↑ Enterobacteriaceae Stomach cancer Youssef et al. [222]

↓↓↓ Bifidobacteriaceae Rectal neoplasm Youssef et al. [222]

↑↑↑ Capnocytophaga, Veillonella (in saliva) Lung cancer Yan et al. [223]
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The impact of the intestinal flora on tumor develop-
ment can be categorized as direct or indirect mechanisms 
[61]. For instance, Fusobacterium nucleatum directly 
contributes to colorectal tumorigenesis by binding Fuso-
bacterium adhesin A (FadA) to E-cadherin, which leads 
to β-catenin activation and cellular proliferation [62, 63]. 
On the contrary, persistent stimulation of the immune 
system is one of the indirect mechanisms whereby micro-
biota affects carcinogenesis.

Microbial mechanisms of carcinogenesis 
and tumor progression
Oncogenic actions of microbiota through the induction 
of chronic inflammation
Inflammation is a double-edged sword that can be anti- 
and pro-tumorigenic [64]. The inflammatory mediators 
(cytokines and reactive oxygen and nitrogen species) pro-
duced elevated mutation rates and DNA damage in the 
tumor microenvironment. They reduced the expression 

and activity of DNA repair systems, resulting in the 
genetic instability of cancer cells. Indeed, the inflam-
matory microenvironment impacts diverse aspects of 
carcinogenesis, like tumor cell transformation, prolifera-
tion, invasion, metastasis, and angiogenesis, and could 
be regarded as the seventh hallmark of cancer [65, 66]. 
Microorganisms contribute to tumor initiation and pro-
gression by inducing tumor-promoting inflammation 
or translocating to the tumor site and persisting cancer-
induced inflammation [67, 68]. Studies such as those 
conducted by Wei et  al. have elucidated that inflamma-
tion is a crucial component between microbiota and 
patient survival or prognosis of colorectal cancer. The 
higher frequency of some microbial species in the worse 
prognosis group, such as Fusobacterium nucleatum, was 
correlated with the upregulation of TNF-α (tumor 
necrosis factor), β-catenin, and NF-κB (nuclear factor-
kappa B). It also induces a shift ftom pro-inflammatory 
M1-phenotype to a tumor-promoting M2-phenotype. 

Table 2  Oncogenic potential of bacterial toxin

SHP-2 SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2), Grb2 Growth factor receptor-bound protein 2, MMP10 Matrix metalloproteinase 10, Siva1 
Apoptosis-Inducing Factor, Reg3 Regeneration gene 3, Pim1 Proviral integration site for Moloney murine leukemia virus-1, Akt protein kinase B, BCL2 B-cell lymphoma 
2, STAT​ Signal transducer and activator of transcription, VEGF vascular endothelial growth factor, RhoC Ras homolog family member C, HIF1α hypoxia-inducible factor 
1α, SENP1 SUMO1/sentrin specific peptidase 1, CDK1 cyclin-dependent kinase 1

Bacterium Toxin Oncogenic activity

Helicobacter pylori Cytotoxin-associated gene A (CagA) Binding and activating the SHP-2 tyrosine phosphatase [224, 225]
Disrupting the polarity of epithelial cells [103, 226]
Increasing cell survival by cyclin D1 induction [227]
Cell scattering by binding to Grb2 [228]
Stimulating MMP10 expression [229]
Inhibiting apoptosis by downregulating Siva1 protein [230]
Enhancing cell proliferation by upregulating reg3 [231]

Helicobacter pylori Vacuolating toxin (VacA) Vacuolation of gastric epithelial cells [232, 233]
Disrupting the integrity of epithelial cells leading to carcinogen penetration [234]
Inhibiting acid secretion from gastric parietal cells that proper the stomach microenviron-
ment for the colonization of other bacterial species [235, 236]
Interfering with protective immunity by suppressing the function of immune cells [237, 
238]
Causing cell death via necrosis and apoptosis [239–241]
Stimulating pro-inflammatory activity [238, 242]

Pasteurella multocida Pasteurella multocida toxin (PMT) Eliciting mitogenic effect through Gq-signaling pathways [243, 244]
Preventing apoptosis by inducing pim1 and Akt pathway and modulating the expression 
of Bcl2 family [245]
Promoting the activation of STAT transcription factor and other signaling pathways 
involved in carcinogenesis [246]

Escherichia coli Cytotoxic necrotizing factor 1 (CNF1) Impacting several cellular processes (e.g., inflammation, survival, cell adhesion, and motil-
ity) by modifying Rho GTPases activity and actin cytoskeleton arrangement [247–249]
Activating the RhoC in bladder cancer cells leading to HIF-1α expression, VEGF secretion, 
and promoting angiogenesis [250]
Promoting the migration and invasion of prostate cancer cells [251]
Inducing epithelial-mesenchymal transition[252]

Escherichia coli Colibactin Inducing cell proliferation [253, 254]
Diminishing tumor-infiltrating lymphocytes (CD3+ T population) [255]

Enterotoxigenic 
Bacteroides fragilis

Bacteroides fragilis enterotoxin (BFT) Enhnaced cleavages the E-cadherin that leads to disruption of intercellular junction, 
release and nuclear translocation of β-catenin, c-myc upregulation, and cell proliferation 
[256, 257]
Increasing mucosal permeability [258]
Inducing oncogenic inflammation by activating NF-κB [259–261]
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Conversely, Faecalibacterium prausnitzii was elevated in 
the survival group and was associated with less expres-
sion of NF-κB, β-catenin, and MMP9 (matrix metallo-
peptidase 9) [69].

The different components of the immune system, par-
ticularly innate immunity, are essential in the relationship 
between inflammation induced by commensal micro-
biota and carcinogenesis. The recognition of pathogen-
associated molecular patterns (PAMPs) of commensal 
microflora by toll-like receptors (TLRs) plays a crucial 
role in maintaining intestinal homeostasis. At the same 
time, their dysregulated interaction may cause chronic 
inflammation [70]. According to research conducted 
by Fukata and coworkers, the TLR4 was upregulated in 
colon cancer samples from patients with chronic ulcera-
tive colitis and animal model of colitis-associated cancer 
(CAC) and contributed to the colon carcinogenesis by 
activating the EGFR (epidermal growth factor receptor) 
signaling [71]. Moreover, the studies on the spontane-
ous intestinal tumor model confirmed the critical role 
of MyD88 (adaptor protein triggered by TLRs) in tumor 
development [72]. Related to this, the production of toxic 
products by the gut microbiota reduces the integrity of 
the mucosal surface that allowing foreign antigens to 
penetrate more easily and generating local inflamma-
tion [73]. It is pertinent to point out that the persistent 
activation of NF-kB transcription factors in response to 
chronic inflammation and dysregulation of the Wnt/β-
catenin signaling pathway contributes to tumor develop-
ment [74–76].

The inflammasome is a cytosolic multiprotein com-
plex consisting of NOD-like receptors (NLRs), adaptor 
protein ASC (Apoptosis-associated speck-like protein 

containing a CARD), and pro-caspase-1. Following acti-
vation of the inflammatory pathway by recognition of 
pathogen-associated molecular patterns (PAMPs) or 
damage-associated molecular patterns (DAMPs) with 
the relevant receptors, inflammasome assembles and 
cleaves pro-caspase-1, which in turn cleaves pro-forms of 
the cytokines, such as pro-IL-1β and pro-IL-18, and con-
verts them to the bioactive forms [77]. Functional activ-
ity of this complex protein is required for modulating the 
colonic microbial population, and deficits in any part of 
these constituents lead to the inflammation caused by 
altered gut microbiota [78]. Using the Azoxymethane 
(AOM)/Dextran Sodium Sulfate (DSS) model, Hu et  al. 
illustrated that altered microbiota of Inflammasome 
deficient mice causes inflammation-induced colorectal 
cancer through the induction of CCL5 (CC-chemokine 
ligand 5) and activation of the IL-6 signaling pathway in 
intestinal epithelial cells [79, 80]. Likewise, based on the 
determinative role of NOD2 (Nucleotide-binding oli-
gomerization domain-containing protein 2) in the regu-
lation of intestinal microbiota composition, gut dysbiosis 
following NOD2 deficiency augmented the risk of colitis 
and colitis-associated colorectal cancer in mice [81–83]. 
Interestingly, the carcinogenic phenotype associated with 
NOD2-mediated microbiota dysbiosis was transferable 
and could be transferred via fecal microbiota transplan-
tation from NOD2 deficient mice to wild-type (WT) or 
germ-free mice with NOD2 sufficient expression [81]. 
As represented in Fig. 1, several factors are modified the 
microbial equilibrium leading to tumor induction and 
progression by generating inflammation.

In addition to the pivotal role of innate immunity in 
modulating gut microbiota composition to regulate 

Fig. 1  Gut microbiota contribution in cancer development through inflammation induction
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inflammation and cancer development, members of 
the adaptive immune response, such as T-helper 17 and 
regulatory T cells, are also implicated in tumorigen-
esis. Disturbance of the microbiota balance (dysbiosis) 
and an increase in the abundance of Th17-inducing 
bacteria can cause chronic inflammation that leads to 
the onset and progression of cancer. Studies confirmed 
that tumoral inflammation driven by Th17 cells is often 
tumor-promoting and linked to a poor prognosis in 
colorectal cancer [84, 85].

Activating the IL-23 signaling pathway after Toll-like 
receptors sense translocated microbes or microbial 
products, and triggering the MyD88 adaptor activa-
tion, is critical for producing downstream cytokines, 
i.e., IL-17 [84]. Furthermore, the production of ATP by 
commensal microbiota has been proposed as the medi-
ator for naturally occurring and/or pathogenic Th17 
cell differentiation in lamina propria. As documented 
by Atarashi et  al. the bacterially-driven ATP activates 
CD70high CD11clow cells to produce IL-6, IL-23, and 
TGF-β (Transforming growth factor beta), which sub-
sequently promote Th17 differentiation [86].

Notably, multiple investigations have pointed to 
Colonization with the specific bacterial species that 
promote Th17 differentiation. For instance, segmented 
filamentous bacteria (SFB) produced serum amyloid A 
(SAA), which triggers Th17 cells differentiation by act-
ing on dendritic cells in the lamina propria [87]. This 
Th17 response stimulated by some members of com-
mensal microbiota contributes to infection-induced 
carcinogenesis. Colonization with enterotoxigenic Bac-
teroides fragilis, for illustration, promotes IL-17-pro-
ducing cells-driven inflammation and the development 
of colon cancer [88, 89].

It is now well established that cyclophosphamide 
(CTX) treatment altered the composition of intestinal 
microflora and stimulated the gram-positive bacte-
ria translocation to secondary lymphoid organs, lead-
ing to naive T cell polarization towards Th1 and Th17 
cells [90, 91]. Interestingly, the CTX-stimulated patho-
genic Th17 response mediated by dysbiotic microbiota 
is tumor suppressive and prevents the outgrowth of 
cancer cells. It’s worthwhile to point out that numer-
ous studies documented the contradictory role of Th17 
cells in cancer development [92–94]. These cells have 
a pro-tumorigenic effect by inducing angiogenesis 
and genetic instability and activating the IL-6-onco-
genic STAT-3 signaling pathway. On the other hand, 
they are involved in anti-tumor immunity by convert-
ing to Th1 cells (and producing IFN-) and eradicat-
ing tumor cells directly or promoting tumor-specific 
immune cell recruitment [93]. This dual function could 
be due to Th17 cells’ plasticity and heterogeneity [95]. 

In addition, the type and stage of the tumor are also 
effective.

On the other hand, Regulatory T cells attenuate inflam-
mation-induced carcinogenesis in an IL-10-dependent 
manner. In this regard, the adoptive transfer of regulatory 
T cells reduced the onset and progress of inflammatory 
bowel disease (IBD) and colon cancer induced by Heli-
cobacter hepaticus colonization in aged Rag2 (Recombi-
nation activating gene 2 protein)-deficient mice [96, 97]. 
Similarly, the polysaccharide A (PSA) of nontoxigenic 
Bacteroides fragilis reduced IL-17 production and pro-
tected from H. hepaticus-driven colitis by inducing IL-10 
production in CD4 T cells [98].

Carcinogenic action of microbiota through the production 
of toxins and metabolites
While the importance of the microbiome in carcino-
genesis has been proven, further research is required to 
elucidate the precise mechanism whereby the microbial 
components contribute to cancer development and treat-
ment. Aside from inflammation-driven by microbiota, 
which acts as an indirect mechanism for carcinogenesis, 
some bacterial metabolites directly contribute to the cau-
sation of cancer [99]. Bacterial toxins are one of these 
components that can interact with several signaling path-
ways that modulate cancer-related biological processes, 
including proliferation, cell cycle, differentiation, and 
apoptosis [100]. Table 2 lists some bacterial species that 
generated toxins with oncogenic potential. For instance, 
the cytotoxin-associated gene A (CagA) of Helicobacter 
pylori, a bacterial oncoprotein linked to the development 
of gastric cancer by promoting the genetic instability and 
interactions with host cell proteins like SHP2 (Src homol-
ogy two phosphatases), E-cadherin, and PAR1 (Partition-
ing-defective 1) [101–104]. Some consequences of this 
interaction include inhibition of apoptosis, increased sur-
vival and cell proliferation, loss of cellular polarity, and 
neoplastic transformation [105].

As another example, the enterotoxigenic strains of Bac-
teroides fragilis (ETBF) are a risk factor for colorectal 
cancer, and its metalloprotease toxin is implicated in the 
process of triggering mucosal inflammation [106–108]. 
According to Goodwin et al. B. fragilis enterotoxin (BFT) 
promotes spermine oxidase enzyme (SMO) upregulation 
in intestinal epithelial cells, which leads to the production 
of reactive oxygen species (ROS) and DNA damage [109]. 
Additionally, BFT exposure causes morphologic changes, 
E-cadherin cleavage, and cell proliferation stimulation, 
which is at least in part mediated by E-cadherin cleavage 
followed by β-catenin nuclear translocation and upregu-
lation of the proto-oncogene c-myc [110–112].

The production of metabolites may also contribute to 
the oncogenic action of gut microbiota. Undigested food 
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components are breakdown by the microbial commu-
nity into several metabolites, some of which have been 
shown to have a protective and or harmful effect on can-
cer development (Table 3) [113]. Short-chain fatty acids 
(butyrate, propionate, and acetate) are one of the most 
critical products of carbohydrate fermentation, with anti-
inflammatory, anti-proliferative, and apoptotic inducing 
effects [113, 114]. It also assists in maintaining intestinal 
homeostasis by elevating Foxp3 IL-10-producing Treg 
cells [115, 116]. Similarly, Lactobacillus acidophilus, 
Lactobacillus, linoleic acids (CLAs), Lactobacillus casei, 
Lactobacillus bulgaricus Lactobacillus plantarum, Bifido-
bacterium infantis, Bifidobacterium breve, Bifidobacte-
rium longum, and Streptococcus thermophiles exhibited 
anti-neoplastic and pro-apoptotic impacts [117, 118]. It 
should be mentioned that some evidence, such as that 
published by Nakashima et al. has shown a link between 
GPR40 (G protein-coupled receptor 40) expression, as 
CLAs receptor, and colorectal cancer progression and 
worse prognosis [119, 120].

On the other side, microbial fermentation of a high-fat 
or high-protein diet generates NOCs (N-nitroso com-
pounds), polyamines, ammonia, hydrogen sulfide, and 
secondary bile acids, which promote tumor development 
by triggering inflammation and DNA damage [113]. As 
reviewed by Bernstein and coworkers, short-term expo-
sure of cells to bile acids resulted in the production of 
reactive oxygen and nitrogen species (ROS/RNS), which 
subsequently enhanced DNA damage, mutation rates, 
and apoptosis. Over a more extended period, mutant 
cells acquired growth advantages like apoptosis resist-
ance, raising the risk of gastrointestinal tract cancer 
[121]. Moreover, secondary bile acid (especially deoxy-
cholic acid) induces cancer cell proliferation and invasion 
by activating the β-catenin signaling pathway [122].

Overall, microbiome involvement in cancer initiation 
and progression can be mediated by targeting the tumor 
cells directly or indirectly by modulating the immune 
system. In this context, microbes can influence different 
components of innate and adaptive immunity (includ-
ing dendritic cells, natural killer cells, myeloid cells, 
CD8 T cells, etc.) and cancer progression via direct (act 
as an antigen) and indirect mechanisms (by produc-
ing byproducts and cytokines). In the former, homology 
between microbial epitopes and tumor antigens induced 
cross-reactive T cells that can contribute to anti-tumor 
immunity [123]. As discussed in multiple studies, the 
molecular mimicry and presence of cross-reactive T CD8 
and T CD4 cells may improve the efficacy of anti-cancer 
approaches [124, 125]. Besides, recognition of bacterial 
antigens by pattern recognition receptors (PRRs) (like 
TLRs and NLRs) leads to activation of downstream sign-
aling cascades (NF-κB and STAT3 activation) and pro-
duction of pro-and anti-inflammatory cytokines. PAMPs 
activated Dendritic cells (DCs) and other antigen-pre-
senting cells leading to traveling to mesenteric lymph 
nodes where they activate T helper cells. Notably, micro-
bial dysbiosis and over-activation of NF-κB, STAT3, and 
Wnt/β-catenin signaling pathways are contributed to 
cancer pathogenesis by regulating anti-tumor immune 
response, promoting inflammation, and inducing cancer 
cell proliferation and metastasis [126].

Other factors involved in intestinal cancer progression
In a bidirectional relationship, cancer cells and microbes 
can potentiate each other. For instance, the colibactin-
producing Escherichia coli (E. coli) is more prevalent in 
colon tissue of patients with colorectal cancer than in 
diverticulosis patients [127]. The genotoxic compound 
colibactin promoted cellular senescence and growth 

Table 3  Metabolites with cancer prevention effects

Dietary components Metabolites Microbes Anti-cancer effect References

Fiber Short-chain fatty acids (such 
as butyrate, propionate, and 
acetate)

For instance: Holdemanella 
biformis, Faecalibaculum roden-
tium, Clostridium butyricum

Anti-inflammatory, anti-pro-
liferative, apoptotic inducing 
effects, elevating Foxp3 IL-
10-producing Treg cells

Smith et al. [115]
Li et al. [262]
Furusawa et al. [116]
Louis et al. [113]

Linoleic acids Conjugated linoleic acids 
(CLAs)

Lactobacillus acidophilus, 
Lactobacillus casei, Lactobacil-
lus bulgaricus, Lactobacillus 
plantarum, Bifidobacterium 
infantis, Bifidobacterium breve, 
Bifidobacterium longum, and 
Streptococcus thermophiles

Anti-neoplastic, pro-apoptotic Maggiora et al. [118]
Ewaschuk et al. [117]

Polyphenols (such as: phenolic 
acid, flavonoids, lignin, antho-
cyanin,)

Low-molecular-weight phe-
nolic acids

For instance: Escherichia coli, 
Eubacterium sp., Lactobacil-
lus sp., Bifidobacterium sp., 
Bacteroides sp.

Chemoprevention effect, 
reducing cell prolifration, 
increasing apoptosis, anti-
inflammatory effect, modulat-
ing enzymes

Bultman [263]
Cardona et al. [264]
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factor production that subsequently stimulated cell 
proliferation and tumor growth [128, 129]. Moreover, 
increasing evidence indicates the bacterial involvement 
in metastasis progression of colorectal cancer. Cancer 
cells’ detachment from original sites and their traveling 
to the new organ or tissue is called metastasis cascade. 
According to Seely et  al. specific bacterial species like 
E. coli influences multiple steps of this process, includ-
ing dissemination, circulation, colonization, and prolif-
eration through the epithelial-mesenchymal transition 
(EMT), biofilm formation, paired migration, and altering 
the local microenvironment [130].

The production of flavonoids, anti-oxidants, SCFAs, 
and vitamins following carbohydrate-rich diet consump-
tion increased the intestinal barrier integrity, reduced 
DNA damage and inflammation, and limited pathogen 
colonization. On the contrary, high fat or high protein 
diets that metabolized to carcinogenic products (such 
as N-nitroso compounds and secondary bile acids) 
enhanced cancer progression by promoting DNA dam-
age, tumor proliferation, and inflammation [131]. It’s per-
tinent to point out that excess energy uptake and obesity 
increase cancer risk by altering microbial composition 
and metabolism.

Cancer‑preventing properties of microbes
Unlike cancer-promoting microbiota, which are contrib-
uted to cancer development by inducing inflammation 
or producing carcinogenic compounds, some microbial 
species have beneficial effects on cancer prevention. In 
this context, probiotics effectively control gastrointesti-
nal inflammatory disorders like inflammatory bowel dis-
ease, which have been associated with an increased risk 
of colorectal cancer [132]. Multiple in  vitro and in  vivo 
studies demonstrated various aspects of probiotics in 
cancer onset and progression, including their effects on 
cell proliferation reduction, apoptosis induction, and cell 
cycle arrest. Probiotics’ cancer-prevention effects could 
be attributed to a variety of mechanisms, including (1) 
maintaining colon homeostasis, for example, by pH regu-
lation; (2) modulating intestinal microflora composition 
and their metabolic activity; (3) binding and inactivating 
carcinogens; (4) producing anti-carcinogenic metabo-
lites such as SCFAs and conjugated linoleic acid; and (5) 
immunomodulatory effects like phagocytes activation, 
which results in the early eradication of cancer cells [133, 
134]. Lactobacillus and Bifidobacterium are the two most 
common probiotics in the digestive system. Lactobacil-
lus prevents cancer by producing antioxidants and anti-
angiogenesis factors, reducing inflammation and DNA 
damage, and preventing polyamines and tumor-specific 
antigens expression [135].

Impacts of microbiota on anti‑tumor immunity 
and therapy
Tumor development and intestinal microbiota impact 
each other in a reciprocal relationship. Any alteration 
in the composition of the gut microbes influences the 
tumor microbiota and the tumor microenvironment, 
thus affecting cancer progression. Given the dual role of 
the immune system in dampening or promoting cancer, 
the crosstalk between microbiota and tumor could be 
mediated by the immunomodulatory activity of micro-
flora. It has been verified that gut flora or its metabolites 
(such as SCFAs) affects multiple aspects of host immune 
response.

Commensal microbes have a role in the development 
and maturation of the host immune system, so any altera-
tion in the microbial community caused by antibiotic 
usage, diet, and other environmental factors could influ-
ence the cancer immune surveillance [136]. For instance, 
Fusobacterium nucleatum inhibited the tumor-killing 
activity of natural killer (NK) cells, and the higher level 
of it inversely correlated with a lower density of CD3 T 
cells in colorectal carcinoma tissue [137, 138]. Moreover, 
disrupting the gut microbiota and reducing intestinal 
SCFAs by using broad-spectrum antibiotics promoted 
macrophage hyper-activation and Th1 pro-inflamma-
tory response [139]. Due to the study documented by 
Ma et  al. modulating commensal microbiota controlled 
hepatic natural killer T (NKT) cell accumulation and 
liver tumor growth by modifying bile acids metabo-
lism [140]. The number of monocytes/macrophages and 
conventional DCs in the ileum and spleens increased in 
gnotobiotic pigs after colonization with two strains of 
lactic acid bacteria [141]. Furthermore, peritoneal mac-
rophages of germ-free mice have higher lysosomal activi-
ties and reduced C3b-receptor-mediated phagocytosis 
than control, which reached the normal level following 
cohousing with conventional mice [142]. Similarly, as 
reported by Ohkubo and coworkers, germ-free rats are 
neutropenic and have altered functions [143, 144]. Com-
mensal microflora is involved in TCD4 + differentiation, 
so any alteration in their composition imbalanced the T 
helper and biased the immune response toward the spe-
cific subtypes [145]. For instance, some species of com-
mensal bacteria like Bacteroides fragilis and segmented 
filamentous bacteria induce anti-inflammatory or pro-
inflammatory responses through promoting T cell differ-
entiation toward Treg or Th17 cells, respectively [146].

In addition, gut flora may influence systemic immu-
nity and tumor development by producing metabolites 
(such as short-chain fatty acid and secondary bile acids), 
whole bacterial translocation, stimulating cytokine secre-
tion, circulation of primed lymphocytes, and antigen 
cross-reactivity [30]. Although microbiota in all barriers 
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contributes to the local immune response, the gut micro-
flora is mainly responsible for the microbiota’s systemic 
influence [147]. Also, due to the specific features of tumor 
tissue like hypoxia, abundant nutrients, immune evasion 
strategies served by cancer cells, and neoangiogenesis, 
the tumor microenvironment can be a supportive and 
immune-protected site for bacterial colonization, as pro-
posed by Heymann et al. [148]. These intra-tumoral bac-
teria could influence the tumor infiltrated immune cells. 
For instance, Fusobacterium nucleatum within tumors 
reduces the anti-tumor activity of NK cells and other 
immune cells via its Fap2 protein interaction with TIGIT 
(T-cell immunoglobulin and ITIM domain) inhibitory 
receptors [138].

Parallel to the oncogenic action of microbiota, 
multiple studies pointed to its possible role in mod-
ulating the effectiveness of chemotherapy and immu-
notherapy approaches [149–154]. As reviewed by 
Alexander and colleagues, the modulatory mechanisms 
of gut microbiota on the efficacy and toxicity of chemo-
therapy treatment can be categorized as follows: trans-
location, metabolism, diversity reduction, enzymatic 
degradation, and immunomodulation [150]. It means 
that chemotherapy agents altered the composition of gut 
microbiota and disrupted the integrity of the intestinal 
barrier that facilitated commensal bacteria translocation 
to the systemic milieu. Cyclophosphamide, for instance, 
alters the intestinal microbiota and promotes the trans-
location of gram-positive bacteria to secondary lymphoid 
organs, where they mediate Th1 and Th17 cells genera-
tion [90, 151]. Moreover, gut flora regulates the immune 
and inflammatory response induced by chemotherapy 
and also modifies pharmaceutical, leading to thepoten-
tiating or attenuating the drug efficacy or enhacing its 
adverse effects [150, 152]. Using the mouse model, Iida 
and colleagues proved that microbiota affects the pro-
inflammatory response required for oxaliplatin treatment 
[153].

Accordingly, there is a bidirectional relationship 
between the gut microbiota and anti-cancer treatment 
(especially chemotherapy). It means that changes in 
the gut microbiota affect the efficacy and toxicity of 
chemotherapy medications and that chemotherapy, in 
turn, can alter the microbial composition. In compari-
son to healthy controls, the overall number and diver-
sity of microbial communities were reduced during 
chemotherapy treatment in patients with acute myeloid 
leukemia. This change is linked to a decrease in the 
number of anaerobic bacteria, which lowers pathogen 
colonization resistance and increases the frequency of 
pathogenic enterococci [155]. Similarly, cyclophospha-
mide administration enhanced pathogenic species like 

Pseudomonas, E. coli, enterococci, and Enterobacte-
riaceae [156]. Chemotherapy-induced gut microbiota 
dysbiosis has been associated with the colonization of 
pathogenic bacteria, intestinal damage, and the devel-
opment of adverse effects in several other studies. 
Despite extensive research on the impact of chemo-
therapy on the microbiota, there are fewer reports of 
dysbiosis derived from other anti-cancer medications 
[31, 157]. In the study documented by Vetizou et  al. 
treatment of ipilimumab [anti-CTLA-4 (Cytotoxic 
T-lymphocyte antigen 4)] was associated with elevated 
Clostridiales abundance and a decrease in Burkholde-
riales and Bacteroidales [125]. In addition, comparing 
the microflora of CRC patients before and after surgery 
revealed that total bacterial counts and the counts of 
some obligate anaerobes (including Clostridium coc-
coides, Bacteroides fragilis, Clostridium leptum, Atopo-
bium, Bifidobacterium, and Prevotella) were reduced, 
whereas Pseudomonas, Enterobacteriaceae, Staphylo-
coccus, and Enterococcus increased [158].

Immunotherapy strategies (e.g., immune check-
point inhibition by anti–programmed death-1 (PD-1)/
anti–PD-1 ligand 1 (PD-L1) and anti-CTLA-4 therapy, 
and adoptive cell transfer) could restore the impaired 
immune response against cancer cells, while their effi-
cacy influenced by any factors that affect immune 
surveillance, such as the microbial community of the 
gastrointestinal tract [159–161]. Besides, these inter-
ventions showed interpatient heterogeneity that may 
rely on genetic and environmental factors. Several 
studies highlighted the crucial role of gut microbiota in 
clinical response and or primary resistance to immuno-
therapy approaches. According to Sivan et  al. the dif-
ference in the gut microbiota composition, particularly 
Bifidobacterium, influences anti-cancer immunity and 
the therapeutic efficacy of anti-PDL1 therapy by alter-
ing DC maturation and tumor-specific T cell response 
[162]. Fecal microbiota transplantation from immune 
checkpoint inhibitors (ICIs) responding and non-
responding patients to germ-free or prescribed antibi-
otics mice confirmed the gut microbiota attribution in 
primary resistance to anti-PD1 blocked [163]. Analysis 
of patients’ fecal samples elucidated that Akkermansia 
muciniphila was correlated with clinical response to 
ICIs and enriched in ICIs responder patients [163]. As 
reported by Mager and colleagues, the ICB (Immune 
checkpoint blockade) therapies-promoting effects of 
specific bacterial species, including Bifidobacterium 
pseudolongum, Akkermansia muciniphila, and Lactoba-
cillus johnsonii, are mediated by secretion and systemic 
translocation of inosine and hypoxanthine that affect 
T cell differentiation and activity via adenosine A2A 
receptor (A2AR) in a context-dependent manner [164].
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Tanoue et al. proposed 11 strains that augmented the 
frequency of intestinal IFN-γ CD8 T cells and poten-
tiated the response to immune checkpoint inhibitory 
therapy in the MC38 murine colon adenocarcinoma 
model [165]. Similarly, in melanoma patients under-
going anti-PD1 immunotherapy, the fecal microbiota 
analysis revealed higher diversity and Faecalibacte-
rium enrichment in responder patients [166]. Tumor-
infiltrated and systemic immune response assessments 
in patients enriched in the Faecalibacterium in the gut 
microbiome (Ruminococcaceae family, Clostridiales 
order) indicated TCD8 accumulation in tumor tissue 
and the higher frequency of effector T lymphocytes 
in the systemic circulation. Contrarily, Individuals 
with enrichment of Bacteroidales displayed a higher 
frequency of Treg and myeloid-derived suppressor 
cells (MDSCs) in their circulation [166]. Several other 
studies reported an association between gut micro-
biota and the effectiveness of anti-cancer approaches 
in various malignancies (Table  4). Results could be 
due to discrepancies in how patients were classified as 
responders or non-responders and differences in the 
analysis method [167].

It is pertinent to point out that microbiota may 
reduce the responsiveness to immune checkpoint 
blockade; thus, microbial transplantation or TNF-α 
blockade could be beneficial in circumventing the 
resistance [168]. The abundances of various species 
of gut flora regulated the efficacy of these approaches 
through the secretion of pro-inflammatory cytokines 
(e.g., IL-12 and IFN-γ), elevating regulatory cells (e.g., 
MDSC and Treg), increasing/decreasing the matura-
tion or function of DC, and enhancing the frequency 
of effector cells in circulation or tumor sites (e.g., can-
cer-specific TCD8 + and TCD4 +) [169].

Manipulating the microbiota for cancer therapy
Given the dual role of the bacteria in suppressing or sup-
porting tumorigenesis, manipulating the bacterial com-
munity would be beneficial in cancer prevention and 
treatment. In this regard, multiple strategies have been 
proposed to alter gut microflora composition: (1) Oral 
administration of certain types of bacteria classified as 
probiotics, (2) Using prebiotics (non-digestible food com-
ponents that are well fermented by beneficial bacteria but 
not pathogens) to stimulate the growth and activity of 
beneficial intestinal bacteria, (3) Applying the combina-
tion of probiotics microorganisms with prebiotic com-
ponents to reap the benefits of both strategies (known 
as synbiotics), (4) Targeting cancer-associated bacteria 
with antibiotics and (5) Fecal microbiota transplantation 
(FMT) [157, 170, 171].

With respect to other approaches (applying probiotics 
and prebiotic components), fecal microbiota transplanta-
tion is worked quicker and is more effective in the recon-
stitution of the intestinal microflora [172]. Moreover, 
FMT showed more success in controlling Clostridium 
difficile infection because feces contain additional metab-
olites such as proteins, bacteriophages, and bile acids 
[173].

The gut microbiota composition affects both the effec-
tiveness of anti-cancer therapies and the adverse effects 
(such as chemotherapy, radiotherapy, and immuno-
therapy). Thus, combining anti-cancer treatments with 
antibiotics or commercially available probiotic supple-
ments, which provide beneficial bacterial species, may 
help to improve clinical efficacy and manage side effects 
[174]. Irinotecan (CPT-11) is a camptothecin derivative 
that acts as an anti-neoplastic medication by inhibiting 
topoisomerase I. The glucuronide hydrolysis from SN-
38G (the inactive form of SN-38 detoxified in the liver) in 
the intestinal lumen by bacterial β-glucuronidase causes 
dose-limiting diarrhea [175]. Studies applied diverse 

Table 4  Association between commensal microbiome composition and clinical outcomes of immunotherapy

Anti-PD1 anti-programmed cell death 1 protein, Anti-CTLA-4 anti- cytotoxic T-lymphocyte-associated protein 4

Therapy Types of malignancy Responder Non-responder References

Anti-PD1 NSCLC Akkermansia muciniphila, Enterococcus hirae Routy et al. [163]

Anti-PD1 Melanoma Faecalibacterium Bacteroidales Gopalakrishnan et al. [166]

Anti-PD1 Metastatic melanoma Bifidobacterium longum, Collinsella aerofaciens, 
and Enterococcus faecium

Ruminococcus obeum, 
Roseburia intestinalis

Matson et al. [167]

Anti-CTLA4 Metastatic melanoma Firmicutes phylum, e.g. Faecalibacterium – Chaput et al. [201]

Anti-CTLA4
Anti-PD1

Metastatic melanoma Bacteroides caccae, Streptococcus parasanguinis – Frankel  et al. [265]

Anti-CTLA4
Anti-PD1

Metastatic melanoma Faecalibacterium prausnitzii, Holdemania filiformis, 
Bacteroides thetaiotamicron

– Frankel et al. [265]

Pembrolizumab Metastatic melanoma Dorea formicigenerans – Frankel et al.  [265]
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tactics to reduce the incidence and severity of Irinotecan-
induced-diarrhea, including administration of antibiotics 
or probiotics and selective inhibition of β-glucuronidase 
[175–177]. Similarly, surveys such as that conducted by 
Chitapanarux and coworkers have shown that receiving 
live lactobacillus acidophilus with Bifidobacterium bifi-
dum during pelvic radiotherapy lowers the severity and 
incidence of diarrhea [178]. Likewise, oral administration 
of Bifidobacterium probiotics attenuated colitis following 
Ipilimumab (anti-CTLA-4) without impairing its thera-
peutic efficiency in tumor control [179].

Given that F. nucleatum-colonized colorectal cancer 
suppressed the anti-cancer activity of infiltrated-T and 
NK cells and augmented cancer cell proliferation, tumor 
growth, and metastasis, targeting this anaerobe gram-
negative bacteria (e.g., with antibiotics) could be valuable 
for Fusobacterium-enriched CRC treatment [180–182]. 
It should be noted that the consumption of antibiotics 
may cause unwanted and non-specific depletion of bac-
terial species [157]. To reduce the undesirable effects of 
conventional antibiotics, it’s better to apply pathogen-
specific antibiotics with a narrow range and preferential 
cytotoxicity for bacterial species [183, 184].

As another example, an elevated abundance of Bac-
teroides fragilis following anti-CTLA4 treatment in 
melanoma patients boosted the clinical response to ipili-
mumab [125]. Hence, oral administration of B. fragilis, 
transfer of T cells reactive to B. fragilis, and immuniz-
ing with polysaccharides of B. fragilis were all employed 
to restore the efficacy of anti-CTLA-4 in germ-free or 
antibiotic-treated mice [125]. Likewise, Cordyceps sin-
ensis polysaccharides (CSP) usage in cyclophosphamide-
treated mice affected T helper cells differentiation via 
upregulating TLR and NF-κB components, increasing 
SCFAs level, and modulating the composition and diver-
sity of gut microbiota; thus, CSP was recommended as 
prebiotics to alleviate cyclophosphamide side effects 
[185].

Based on the difference observed in microbiome 
composition between immunotherapy-responder and 
non-responder patients in different types of malig-
nancy (Table  4), multiple clinical trials are conducted 
to evaluate the efficacy of FMT from ICIs-responders 
to non-responders to overcome ICIs resistance [186]. 
Reconstitution of non-responder gut microbiota by fecal 
microbiota transplantation from responder patients was 
effective in reducing the ICIs resistance and enhancing 
the efficacy of immunotherapy approaches [187, 188].

According to the importance of bacterial metabolites 
in gut homeostasis and carcinogenesis, it could be con-
sidered a promising approach for cancer therapy. For 
instance, preventing polyamines production and uptake 
and applying short-chain fatty acids have therapeutic 

potential in cancer treatment [189–191]. Karpiński et al. 
reviewed the number of bacterial bioactive compounds 
with anticancer properties [192]. Despite several studies 
on carcinogenic and/or potentially anti-cancer metabo-
lites, most were performed in  vitro, and the safe thera-
peutic dose for clinical usage has not been determined 
[193]. The intricate interaction between metabolites 
and the immune system or tumor microenvironment is 
another limitation in its clinical use [191]. The therapeu-
tic efficacy of metabolites (such as short-chain fatty acids) 
is dependent on a variety of parameters, including con-
centration and tissue context. Given The impact of con-
text on optimal concentration, the time of intervention 
and metabolites delivery to the appropriate site should be 
considered. On the other hand, since some metabolites 
are carcinogenic, inhibition of their production process 
is helpful, but the investigation tools for their pharmaco-
logical inhibition are limited [194].

In comparison between several types of conventional 
anti-cancer treatment (like immunotherapy and chem-
otherapy) and microbial therapy, it should be noted 
that the former strategies have multiple disadvantages, 
including normal tissue toxicity, penetration to solid 
tumors, and drug resistance [195]. Cytotoxic chemother-
apy is the main anti-cancer regime in patients with meta-
static CRC [196]. As reported by Jessup and colleagues, 
the use of adjuvant chemotherapy in stage III colon can-
cer enhanced patients’ survival; however, its clinical ben-
efit is lower in black persons or patients with high-grade 
cancer [197]. Immunotherapy, particularly Immune 
checkpoint inhibitors, is still in the beginning phases of 
gastrointestinal cancer treatment compared to melanoma 
and non-small-cell lung cancer (NSCLC). According to 
Ganesh et  al. pembrolizumab and nivolumab, anti-PD1 
antibodies, exhibited clinical advantages in patients with 
dMMR–MSI-H metastatic CRC (mismatch-repair-defi-
cient or have high microsatellite instability). Contrarily, 
they have limited efficacy in the pMMR–MSI-L group, 
which compose the majority of patients with metastatic 
CRC. These types of CRC have Low immune cell infil-
tration and lower mutational burden. Combining ICIs 
with chemotherapy and radiotherapy may enhance their 
clinical efficacy by increasing T cell infiltration [198]. 
Despite advances in chemotherapy and immunotherapy 
in the survival of CRC patients, they have been associ-
ated with adverse effects such as colitis, diarrhea, and 
other immune-related adverse effects. Immune evasion 
and low mutational rates are also two hurdles in immu-
notherapy to treat gastrointestinal (GI) cancer [199]. Of 
note, evidence has demonstrated the association between 
the microbiome and the therapeutic efficacy of cancer 
treatments. Furthermore, microbiome-based thera-
pies have fewer side effects than traditional treatments; 
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however, more clinical research is necessary. Bacillus 
Calmette–Guerin (BCG) is the only microbial-based 
treatment approved by U.S. Food and Drug Administra-
tion (FDA). Given the inability of microbial therapy to 
entirely eliminate tumors, it is helpful to combine it with 
other conventional treatments. Additionally, bacteria 
delivery to tumor tissue should be optimized to minimize 
the possibility of systemic infections [195].

Employing microbes or their metabolites 
as a predictable marker for clinical response 
or cancer progression
Immune checkpoint molecules were upregulated in sev-
eral types of cancer to evade the anti-tumor immune 
response. So checkpoint inhibitors are applied to reinvig-
orate the anti-tumor immune response. Still, they could 
have also activated autoreactive T cells in various organs, 
such as the gastrointestinal tract, leading to immune-
related colitis [200]. Determining the baseline composi-
tion of gut microbiota elucidated the association between 
Firmicutes enriched microbiota (e.g., Faecalibacterium) 
and clinical response or immune-related adverse events 
following ipilimumab treatment; thus, suggested as a 
marker for predicting clinical outcomes and colitis before 
ipilimumab therapy [201].

Furthermore, according to research conducted by 
Nomura et  al. the concentration of fecal and plasma 
SCFAs is correlated with the effectiveness of anti-PD1 
immunotherapy. The SCFAs concentration in responder 
and non-responder groups was higher in feces and 
plasma samples collected before anti-PD1 treatment 
(nivolumab or pembrolizumab). As a result, fecal SCFAs 
analysis was recommended as a non-invasive patient 
screening approach [202].

Given that bacterial genotoxins, including colibactin 
and Bacteroides fragilis toxin (BFT), play a role in colo-
rectal cancer development, it may be beneficial to utilize 
as a marker for non-invasive screening of sporadic CRC 
in combination with a fecal occult blood test (FOBT) 
[203, 204].

Due to the association between microbiota-derived 
metabolites and CRC development, several reports high-
lighted the importance of metabolites as markers for 
CRC screening. For instance, stool metabolites analy-
sis revealed greater levels of butyric acid and acetic acid 
in patients with colorectal adenomatous polyps (CAPs) 
(precancerous lesions of CRC) and higher t10,c12-CLA 
in healthy individuals [205]. As documented by Xi et al. 
microbial metabolite contents are varied throughout 
the different pathogenic sites of CRC [206]. Further-
more, Gas Chromatography–Mass Spectrometry (GC–
MS) examination of fecal specimens from CRC patients 
and healthy people revealed higher concentrations of 

acetate and amino acids in CRC patients, as well as 
higher concentrations of butyrate and ursodeoxycholic 
acid in healthy individuals [207]. Another GC–MS-
based metabolomics analysis discovered a higher level of 
polyamines and amino acids in CRC patients [208]. It’s 
worth mentioning that the outcomes of some investiga-
tions were inconsistent. For example, there was no link 
between fecal SCFAs (acetate, butyrate, and propionate) 
concentration and tumor status in a study conducted by 
Sze and colleagues [209].

In addition to the predictive potential of microbial 
markers in the detection/prognosis of colorectal cancer, 
its usage is associated with limitations. (1) The complex-
ity and diversity of microbiome between individuals and 
various populations complicated the detection of uni-
versal microbial markers. (2) Due to the variation of dif-
ferent studies in sample collection, metabolite and RNA 
extraction, and data analysis that impact the determina-
tion of microbial markers, standardization is essential 
to compare the outcomes of studies. (3) The presence of 
unrelated microbial species in the stool sample makes it 
difficult to detect biomarkers of the disease. (4) It is per-
tinent to point out that antibiotics usage alters the micro-
bial community and the expression of markers. (5) The 
differences between mucosa-associated and fecal micro-
biota should be considered [210, 211].

Conclusion
Microorganisms (including bacteria, fungi, viruses, and 
protozoa) are inhabited on all body surfaces and affect 
various aspects of host physiology, such as metabolism 
and immune system development. They might act dual 
role in tumor treatment or progress by various mecha-
nisms. In particular, they could inhibit or support tumor 
progress by deterring or promoting pro-tumor inflamma-
tion, respectively (Fig. 2).

Dysbiosis, or the alteration of the gut microbial com-
munity, is caused by environmental or host-related 
changes and influences the incidence and progression of 
diseases such as cancer. Indiscriminate antibiotics usage 
potentiated cancer initiation and progression by deplet-
ing health-promoting bacteria, promoting pathogen 
colonization, and reducing microbial diversity. Hence, 
restoring normal flora by taking probiotics supplements 
or other dietary interventions is beneficial for maintain-
ing optimal microbiota composition. In addition, more 
pathogen-specific antibiotics with a narrow range and 
developing novel anti-bacterial strategies (like nano-
medicine) aid in preserving eubiosis [183, 184].

The interaction between gastrointestinal microbiota 
and cancer progression is bidirectional, implying that 
tumor advancement impacts tumor/gut microbiota 
and vice versa. As a result, irrespective of whether the 
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gut dysbiosis is the consequence of malignancy or the 
cause, it would be worthwhile to investigate the micro-
bial community as a predictor of disease progression and 
response to treatment. Furthermore, since microflora 
may play a role in modifying the curative efficacy of anti-
cancer therapy and alleviating their adverse effects, any 
changes in their diversity or population can affect the 
clinical outcomes of anti-cancer approaches. This study 
recapitulated the information that confirmed the link 
between gut microbiota and cancer. Despite extensive 
research in this area, only a few prospective studies have 
documented the causative role of microbiota in tumor 
initiation. Hence, further research is required to deter-
mine the mechanisms of microbial involvement in cancer 
occurrence to prevent carcinogenesis.

Despite huge advances in cancer treatment, not all 
individuals respond to treatment in the same way. 
At least in part, these discrepancies may be linked to 
microbial population diversity. Accordingly, identify-
ing the bacteria involved and modulating the micro-
biome through dietary interventions, FMT, and 
antibiotics administration can improve response to 
therapy. Cancer bacteriotherapy (use of bacteria in 

cancer treatment, either alone or in combination with 
other therapies) can be utilized for the targeted deliv-
ery of therapeutic agents. Although the use of bacte-
ria in cancer treatment has long been discussed, it has 
recently received more attention as a novel anti-cancer 
approach.
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